Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 340
1.
Nature ; 626(7997): 169-176, 2024 Feb.
Article En | MEDLINE | ID: mdl-38267577

To coordinate cellular physiology, eukaryotic cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondrial contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signalling molecules, lipids and metabolites3,4. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle5,6. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation7,8, a clear understanding of their nanoscale organization and regulation is still lacking. Here we combine three-dimensional electron microscopy with high-speed molecular tracking of a model organelle tether, Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), to map the structure and diffusion landscape of ERMCSs. We uncovered dynamic subdomains within VAPB contact sites that correlate with ER membrane curvature and undergo rapid remodelling. We show that VAPB molecules enter and leave ERMCSs within seconds, despite the contact site itself remaining stable over much longer time scales. This metastability allows ERMCSs to remodel with changes in the physiological environment to accommodate metabolic needs of the cell. An amyotrophic lateral sclerosis-associated mutation in VAPB perturbs these subdomains, likely impairing their remodelling capacity and resulting in impaired interorganelle communication. These results establish high-speed single-molecule imaging as a new tool for mapping the structure of contact site interfaces and reveal that the diffusion landscape of VAPB at contact sites is a crucial component of ERMCS homeostasis.


Endoplasmic Reticulum , Mitochondria , Mitochondrial Membranes , Movement , Vesicular Transport Proteins , Humans , Amyotrophic Lateral Sclerosis/genetics , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Signal Transduction , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/ultrastructure , Microscopy, Electron , Imaging, Three-Dimensional , Binding Sites , Diffusion , Time Factors , Mutation , Homeostasis
2.
Nature ; 615(7954): 934-938, 2023 03.
Article En | MEDLINE | ID: mdl-36949187

Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.


Cryoelectron Microscopy , Electron Transport Complex III , Electron Transport Complex II , Electron Transport Complex IV , Electron Transport Complex I , Mitochondria , Mitochondrial Membranes , Electron Transport , Electron Transport Complex III/chemistry , Electron Transport Complex III/metabolism , Electron Transport Complex III/ultrastructure , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/ultrastructure , Mitochondria/chemistry , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Electron Transport Complex II/chemistry , Electron Transport Complex II/metabolism , Electron Transport Complex II/ultrastructure , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Electron Transport Complex I/ultrastructure , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Molecular Dynamics Simulation , Binding Sites , Evolution, Molecular
3.
J Cell Biol ; 222(4)2023 04 03.
Article En | MEDLINE | ID: mdl-36786771

Cellular cryo-electron tomography (cryo-ET) enables three-dimensional reconstructions of organelles in their native cellular environment at subnanometer resolution. However, quantifying ultrastructural features of pleomorphic organelles in three dimensions is challenging, as is defining the significance of observed changes induced by specific cellular perturbations. To address this challenge, we established a semiautomated workflow to segment organellar membranes and reconstruct their underlying surface geometry in cryo-ET. To complement this workflow, we developed an open-source suite of ultrastructural quantifications, integrated into a single pipeline called the surface morphometrics pipeline. This pipeline enables rapid modeling of complex membrane structures and allows detailed mapping of inter- and intramembrane spacing, curvedness, and orientation onto reconstructed membrane meshes, highlighting subtle organellar features that are challenging to detect in three dimensions and allowing for statistical comparison across many organelles. To demonstrate the advantages of this approach, we combine cryo-ET with cryo-fluorescence microscopy to correlate bulk mitochondrial network morphology (i.e., elongated versus fragmented) with membrane ultrastructure of individual mitochondria in the presence and absence of endoplasmic reticulum (ER) stress. Using our pipeline, we demonstrate ER stress promotes adaptive remodeling of ultrastructural features of mitochondria including spacing between the inner and outer membranes, local curvedness of the inner membrane, and spacing between mitochondrial cristae. We show that differences in membrane ultrastructure correlate to mitochondrial network morphologies, suggesting that these two remodeling events are coupled. Our pipeline offers opportunities for quantifying changes in membrane ultrastructure on a single-cell level using cryo-ET, opening new opportunities to define changes in ultrastructural features induced by diverse types of cellular perturbations.


Electron Microscope Tomography , Mitochondria , Mitochondrial Membranes , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Mitochondria/ultrastructure , Mitochondrial Membranes/ultrastructure , Endoplasmic Reticulum Stress
4.
Immun Inflamm Dis ; 10(7): e647, 2022 07.
Article En | MEDLINE | ID: mdl-35759226

Mitochondria-associated endoplasmic reticulum membranes (MAM) are specialized subcellular compartments that are shaped by endoplasmic reticulum (ER) subdomains placed side by side to the outer membrane of mitochondria (OMM) being connected by tethering proteins in mammalian cells. Studies showed that MAM has multiple physiological functions. These include regulation of lipid synthesis and transport, Ca2+ transport and signaling, mitochondrial dynamics, apoptosis, autophagy, and formation and activation of an inflammasome. However, alterations of MAM integrity lead to deleterious effects due to an increased generation of mitochondrial reactive oxygen species (ROS) via increased Ca2+ transfer from the ER to mitochondria. This, in turn, causes mitochondrial damage and release of mitochondrial components into the cytosol as damage-associated molecular patterns which rapidly activate MAM-resident Nod-like receptor protein-3 (NLRP3) inflammasome components. This complex induces the release of pro-inflammatory cytokines that initiate low-grade chronic inflammation that subsequently causes the development of metabolic diseases. But, the mechanisms of how MAM is involved in the pathogenesis of these diseases are not exhaustively reviewed. Therefore, this review was aimed to highlight the contribution of MAM to a variety of cellular functions and consider its significance pertaining to the pathogenesis of inflammation-mediated metabolic diseases.


Metabolic Diseases , Mitochondrial Membranes , Animals , Endoplasmic Reticulum/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Mammals , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Mitochondria , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure
5.
Science ; 375(6577): eabi4343, 2022 Jan 14.
Article En | MEDLINE | ID: mdl-35025629

The outer mitochondrial membrane (OMM) is essential for cellular homeostasis. Yet little is known of the mechanisms that remodel it during natural stresses. We found that large "SPOTs" (structures positive for OMM) emerge during Toxoplasma gondii infection in mammalian cells. SPOTs mediated the depletion of the OMM proteins mitofusin 1 and 2, which restrict parasite growth. The formation of SPOTs depended on the parasite effector TgMAF1 and the host mitochondrial import receptor TOM70, which is required for optimal parasite proliferation. TOM70 enabled TgMAF1 to interact with the host OMM translocase SAM50. The ablation of SAM50 or the overexpression of an OMM-targeted protein promoted OMM remodeling independently of infection. Thus, Toxoplasma hijacks the formation of SPOTs, a cellular response to OMM stress, to promote its growth.


Mitochondrial Membranes/physiology , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Protozoan Proteins/metabolism , Toxoplasma/physiology , Animals , Cell Line , GTP Phosphohydrolases/metabolism , Humans , Intracellular Membranes/physiology , Intracellular Membranes/ultrastructure , Mice , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/ultrastructure , Mitochondrial Proteins/metabolism , Protein Binding , Stress, Physiological , Toxoplasma/growth & development , Toxoplasma/ultrastructure , Toxoplasmosis/parasitology , Vacuoles/physiology , Vacuoles/ultrastructure
6.
Cell Rep ; 38(4): 110290, 2022 01 25.
Article En | MEDLINE | ID: mdl-35081352

Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F1Fo-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10ATPsynthase, not on Mic10MICOS. We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F1Fo-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth.


Adaptation, Physiological/physiology , Adenosine Triphosphatases/metabolism , Membrane Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism
7.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article En | MEDLINE | ID: mdl-34681781

In this paper, we examined the effects of melittin, a bee venom membrane-active peptide, on mitochondrial respiration and cell viability of healthy human lymphocytes (HHL) and Jurkat cells, as well as on lymphoblasts from acute human T cell leukemia. The viability of melittin-treated cells was related to changes in O2 consumption and in the respiratory control index (RCI) of mitochondria isolated from melittin-pretreated cells as well as of mitochondria first isolated from cells and then directly treated with melittin. It was shown that melittin is three times more cytotoxic to Jurkat cells than to HHL, but O2 consumption and RCI values of mitochondria from both cell types were equally affected by melittin when melittin was directly added to mitochondria. To elucidate the molecular mechanism of melittin's cytotoxicity to healthy and cancer cells, the effects of melittin on lipid-packing and on the dynamics in model plasma membranes of healthy and cancer cells, as well as of the inner mitochondrial membrane, were studied by EPR spin probes. The affinity of melittin binding to phosphatidylcholine, phosphatidylserine, phosphatidic acid and cardiolipin, and binding sites of phospholipids on the surface of melittin were studied by 31P-NMR, native PAGE and AutoDock modeling. It is suggested that the melittin-induced decline of mitochondrial bioenergetics contributes primarily to cell death; the higher cytotoxicity of melittin to cancer cells is attributed to its increased permeability through the plasma membrane.


Lymphocytes/drug effects , Melitten/pharmacology , Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Bee Venoms/chemistry , Blood Cells/drug effects , Blood Cells/metabolism , Cell Respiration/drug effects , Cells, Cultured , Humans , Jurkat Cells , Lipid Bilayers/chemistry , Lymphocytes/metabolism , Melitten/isolation & purification , Mitochondria/physiology , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Models, Biological , Permeability/drug effects
8.
Methods Mol Biol ; 2277: 449-461, 2021.
Article En | MEDLINE | ID: mdl-34080168

Conventional transmission electron microscopy is an essential tool to understand the structure-function relationships and play a vital role in biological research. Mitochondria-associated membranes are linked with cancer processes in a fundamental manner. A conventional transmission electron microscopy method for preparing specimens in clinical and research settings for the study-analysis of the mitochondria-associated membranes in human tumors is presented. The sample processing includes chemical fixation by immersion, dehydration, embedding, polymerization, sectioning, and staining.


Intracellular Membranes/ultrastructure , Mitochondria/ultrastructure , Neoplasms/pathology , Humans , Image Processing, Computer-Assisted , Microscopy, Electron, Transmission/methods , Mitochondrial Membranes/ultrastructure , Neoplasms/ultrastructure , Tissue Embedding/methods
9.
Am J Physiol Cell Physiol ; 321(1): C17-C25, 2021 07 01.
Article En | MEDLINE | ID: mdl-33979213

Sleep deprivation has profound influence on several aspects of health and disease. Mitochondria dysfunction has been implicated to play an essential role in the neuronal cellular damage induced by sleep deprivation, but little is known about how neuronal mitochondrial ultrastructure is affected under sleep deprivation. In this report, we utilized electron cryo-tomography to reconstruct the three-dimensional (3-D) mitochondrial structure and extracted morphometric parameters to quantitatively characterize its reorganizations. Isolated mitochondria from the hippocampus and cerebral cortex of adult male Sprague-Dawley rats after 72 h of paradoxical sleep deprivation (PSD) were reconstructed and analyzed. Statistical analysis of six morphometric parameters specific to the mitochondrial inner membrane topology revealed identical pattern of changes in both the hippocampus and cerebral cortex but with higher significance levels in the hippocampus. The structural differences were indistinguishable by conventional phenotypic methods based on two-dimensional electron microscopy images or 3-D electron tomography reconstructions. Furthermore, to correlate structure alterations with mitochondrial functions, high-resolution respirometry was employed to investigate the effects of PSD on mitochondrial respiration, which showed that PSD significantly suppressed the mitochondrial respiratory capacity of the hippocampus, whereas the isolated mitochondria from the cerebral cortex were less affected. These results demonstrate the capability of the morphometric parameters for quantifying complex structural reorganizations and suggest a correlation between PSD and inner membrane architecture/respiratory functions of the brain mitochondria with variable effects in different brain regions.


Cerebral Cortex/ultrastructure , Hippocampus/ultrastructure , Mitochondria/ultrastructure , Mitochondrial Membranes/ultrastructure , Sleep Deprivation/physiopathology , Sleep, REM/physiology , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Electron Microscope Tomography , Hippocampus/metabolism , Hippocampus/physiopathology , Image Processing, Computer-Assisted/methods , Male , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Organ Specificity , Oxygen Consumption/physiology , Rats , Rats, Sprague-Dawley , Sleep Deprivation/metabolism
10.
Cell Rep ; 35(2): 108947, 2021 04 13.
Article En | MEDLINE | ID: mdl-33852852

During mitochondrial fission, key molecular and cellular factors assemble on the outer mitochondrial membrane, where they coordinate to generate constriction. Constriction sites can eventually divide or reverse upon disassembly of the machinery. However, a role for membrane tension in mitochondrial fission, although speculated, has remained undefined. We capture the dynamics of constricting mitochondria in mammalian cells using live-cell structured illumination microscopy (SIM). By analyzing the diameters of tubules that emerge from mitochondria and implementing a fluorescence lifetime-based mitochondrial membrane tension sensor, we discover that mitochondria are indeed under tension. Under perturbations that reduce mitochondrial tension, constrictions initiate at the same rate, but are less likely to divide. We propose a model based on our estimates of mitochondrial membrane tension and bending energy in living cells which accounts for the observed probability distribution for mitochondrial constrictions to divide.


Cytoskeleton/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Mitochondrial Membranes/metabolism , Animals , Biomechanical Phenomena , COS Cells , Chlorocebus aethiops , Cytoskeleton/ultrastructure , Dynamins/genetics , Dynamins/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mitochondria/ultrastructure , Mitochondrial Membranes/ultrastructure , Surface Tension , Transfection , Transgenes , Red Fluorescent Protein
11.
FASEB J ; 35(4): e21553, 2021 04.
Article En | MEDLINE | ID: mdl-33749943

The role of mitofusin 2 (Mfn2) in the regulation of skeletal muscle (SM) mitochondria-sarcoplasmic (SR) juxtaposition, mitochondrial morphology, mitochondrial cristae density (MCD), and SM quality has not been studied in humans. In in vitro studies, whether Mfn2 increases or decreases mitochondria-SR juxtaposition remains controversial. Transmission electron microscopy (TEM) images are commonly used to measure the organelle juxtaposition, but the measurements are performed "by-hand," thus potentially leading to between-rater differences. The purposes of this study were to: (1) examine the repeatability and reproducibility of mitochondrial-SR juxtaposition measurement from TEM images of human SM between three raters with different experience and (2) compare the mitochondrial-SR juxtaposition, mitochondrial morphology, MCD (stereological-method), and SM quality (cross-sectional area [CSA] and the maximum voluntary contraction [MVC]) between subjects with high abundance (Mfn2-HA; n = 6) and low abundance (Mfn2-LA; n = 6) of Mfn2 protein. The mitochondria-SR juxtaposition had moderate repeatability and reproducibility, with the most experienced raters showing the best values. There were no differences between Mfn2-HA and Mfn2-LA groups in mitochondrial size, distance from mitochondria to SR, CSA, or MVC. Nevertheless, the Mfn2-LA group showed lower mitochondria-SR interaction, MCD, and VO2max . In conclusion, mitochondrial-SR juxtaposition measurement depends on the experience of the rater, and Mfn2 protein seems to play a role in the metabolic control of human men SM, by regulating the mitochondria-SR interaction.


GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Calcium/metabolism , Humans , Mitochondria/ultrastructure , Mitochondria, Muscle/metabolism , Mitochondrial Membranes/ultrastructure , Muscle, Skeletal/ultrastructure , Sarcoplasmic Reticulum/metabolism
12.
J Biosci ; 462021.
Article En | MEDLINE | ID: mdl-33785679

The mitochondrion conformation and the contents of conjugated polyamines were investigated using the embryos of developing wheat (Triticum aestivum L.) grains of two cultivars differing in drought tolerance as experiment materials. After drought stress treatment for 7 days, the relative water content of embryo and relative increase rate of embryo dry weight of the drought-sensitive Yangmai No. 9 cv. decreased more significantly than those of the drought-tolerant Yumai No. 18 cv. Furthermore, the changes in mitochondrion conformation of Yangmai No. 9 were more marked. Meanwhile, the increases of the contents of conjugated non-covalently spermidine (CNC-Spd) and conjugated covalently putrescine (CC-Put) of Yumai No. 18 were more obvious than those of Yangmai No. 9. Treatment with exogenous Spd not only alleviated the injury of drought stress to Yangmai No. 9, but also enhanced the increase of CNC-Spd content and inhibited the change in the mitochondrion conformation of this cultivar. The treatments of Yumai No. 18 with two inhibitors, methylglyoxyl-bis (guanylhydrazone) and phenanthrolin, significantly inhibited the drought stress-induced increases of CNC-Spd and CC-Put contents of the cultivar, respectively. Meanwhile, the treatments with the two inhibitors aggravated the injury of drought stress to Yumai No. 18 and enhanced the change in the mitochondrion conformation of this cultivar. These results mentioned above suggested that the CNC-Spd and CC-Put in embryo mitochondrion membrane isolated from developing grains could enhance the wheat tolerance to drought stress by maintaining the mitochondrion conformation.


Mitochondrial Membranes/metabolism , Polyamines/metabolism , Seeds/metabolism , Triticum/metabolism , Water/physiology , Droughts , Mitochondrial Membranes/ultrastructure , Mitoguazone , Phenanthrolines , Stress, Physiological , Triticum/ultrastructure
13.
Biomolecules ; 11(2)2021 02 05.
Article En | MEDLINE | ID: mdl-33562550

Cardiolipin (CL) is a hallmark phospholipid localized within the inner mitochondrial membrane. Upon several mitochondrial stress conditions, CL is translocated to specialized platforms, where it may play a role in signaling events to promote mitophagy and apoptosis. Recent studies characterized the molecular composition of MAM-associated lipid microdomains and their implications in regulating the autophagic process. In this study we analyzed the presence of CL within MAMs following autophagic stimulus and the possible implication of raft-like microdomains enriched in CL as a signaling platform in autophagosome formation. Human 2FTGH fibroblasts and SKNB-E-2 cells were stimulated under nutrient deprivation with HBSS. MAM fraction was obtained by an ultracentrifugation procedure and analyzed by HPTLC immunostaining. CL interactions with mitofusin2 (MFN2), calnexin (CANX) and AMBRA1 were analyzed by scanning confocal microscopy and coimmunoprecipitation. The analysis revealed that CL accumulates in MAMs fractions following autophagic stimulus, where it interacts with MFN2 and CANX. It associates with AMBRA1, which in turn interacts with BECN1 and WIPI1. This study demonstrates that CL is present in MAM fractions following autophagy triggering and interacts with the multimolecular complex (AMBRA1/BECN1/WIPI1) involved in autophagosome formation. It may have both structural and functional implications in the pathophysiology of neurodegenerative disease(s).


Adaptor Proteins, Signal Transducing/metabolism , Autophagosomes/metabolism , Calnexin/metabolism , Cardiolipins/metabolism , GTP Phosphohydrolases/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Autophagosomes/ultrastructure , Autophagy/drug effects , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Blotting, Western , Calnexin/genetics , Cardiolipins/isolation & purification , Cell Fractionation , Cell Line , Fibroblasts/metabolism , Fibroblasts/ultrastructure , GTP Phosphohydrolases/genetics , Gene Expression , Humans , Isotonic Solutions/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Membranes/ultrastructure , Mitochondrial Proteins/genetics , Mitophagy/drug effects , Neurons/metabolism , Neurons/ultrastructure , Protein Binding
14.
Int J Mol Sci ; 22(3)2021 Feb 02.
Article En | MEDLINE | ID: mdl-33540542

The existence of a complete oxidative phosphorylation system (OXPHOS) supercomplex including both electron transport system and ATP synthases has long been assumed based on functional evidence. However, no structural confirmation of the docking between ATP synthase and proton pumps has been obtained. In this study, cryo-electron tomography was used to reveal the supramolecular architecture of the rat heart mitochondria cristae during ATP synthesis. Respirasome and ATP synthase structure in situ were determined using subtomogram averaging. The obtained reconstructions of the inner mitochondrial membrane demonstrated that rows of respiratory chain supercomplexes can dock with rows of ATP synthases forming oligomeric ordered clusters. These ordered clusters indicate a new type of OXPHOS structural organization. It should ensure the quickness, efficiency, and damage resistance of OXPHOS, providing a direct proton transfer from pumps to ATP synthase along the lateral pH gradient without energy dissipation.


Mitochondria, Heart/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Proton Pumps/metabolism , Animals , Cryoelectron Microscopy , Electron Transport , Mitochondria, Heart/ultrastructure , Mitochondrial Membranes/ultrastructure , Mitochondrial Proton-Translocating ATPases/ultrastructure , Oxidative Phosphorylation , Protein Conformation , Proton Pumps/ultrastructure , Rats , Rats, Wistar
15.
Sci Rep ; 11(1): 1037, 2021 01 13.
Article En | MEDLINE | ID: mdl-33441863

Mitochondria have a remarkable ability to uptake and store massive amounts of calcium. However, the consequences of massive calcium accumulation remain enigmatic. In the present study, we analyzed a series of time-course experiments to identify the sequence of events that occur in a population of guinea pig cardiac mitochondria exposed to excessive calcium overload that cause mitochondrial permeability transition (MPT). By analyzing coincident structural and functional data, we determined that excessive calcium overload is associated with large calcium phosphate granules and inner membrane fragmentation, which explains the extent of mitochondrial dysfunction. This data also reveals a novel mechanism for cyclosporin A, an inhibitor of MPT, in which it preserves cristae despite the presence of massive calcium phosphate granules in the matrix. Overall, these findings establish a mechanism of calcium-induced mitochondrial dysfunction and the impact of calcium regulation on mitochondrial structure and function.


Calcium/metabolism , Mitochondrial Membranes/metabolism , Animals , Calcium Phosphates/metabolism , Cryoelectron Microscopy , Guinea Pigs , Membrane Potential, Mitochondrial , Mitochondria, Heart/metabolism , Mitochondria, Heart/physiology , Mitochondria, Heart/ultrastructure , Mitochondrial Membranes/physiology , Mitochondrial Membranes/ultrastructure
16.
Nat Commun ; 12(1): 120, 2021 01 05.
Article En | MEDLINE | ID: mdl-33402698

Mitochondrial ATP synthase plays a key role in inducing membrane curvature to establish cristae. In Apicomplexa causing diseases such as malaria and toxoplasmosis, an unusual cristae morphology has been observed, but its structural basis is unknown. Here, we report that the apicomplexan ATP synthase assembles into cyclic hexamers, essential to shape their distinct cristae. Cryo-EM was used to determine the structure of the hexamer, which is held together by interactions between parasite-specific subunits in the lumenal region. Overall, we identified 17 apicomplexan-specific subunits, and a minimal and nuclear-encoded subunit-a. The hexamer consists of three dimers with an extensive dimer interface that includes bound cardiolipins and the inhibitor IF1. Cryo-ET and subtomogram averaging revealed that hexamers arrange into ~20-megadalton pentagonal pyramids in the curved apical membrane regions. Knockout of the linker protein ATPTG11 resulted in the loss of pentagonal pyramids with concomitant aberrantly shaped cristae. Together, this demonstrates that the unique macromolecular arrangement is critical for the maintenance of cristae morphology in Apicomplexa.


Mitochondria/ultrastructure , Mitochondrial Membranes/ultrastructure , Mitochondrial Proton-Translocating ATPases/chemistry , Protein Subunits/chemistry , Protozoan Proteins/chemistry , Toxoplasma/ultrastructure , Binding Sites , Cardiolipins/chemistry , Cardiolipins/metabolism , Cryoelectron Microscopy , Gene Expression , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/genetics , Protein Subunits/metabolism , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Substrate Specificity , Thermodynamics , Toxoplasma/genetics , Toxoplasma/metabolism , ATPase Inhibitory Protein
17.
Mitochondrion ; 56: 82-90, 2021 01.
Article En | MEDLINE | ID: mdl-33220503

The efficient production of energy via oxidative phosphorylation is essential to the growth, survival, and reproduction of eukaryotes. The behavior (position of, and communication between, mitochondria) and morphology of mitochondria play key roles in efficient energy production and are influenced by oxidative stressors such as ultraviolet (UV) radiation. We tested the hypothesis that mitochondria change their behavior and morphology to meet energetic demands of responding to changes in oxidative stress. Specifically, we predicted that UV irradiation would increase the density of inner mitochondrial membrane and proportion of inter-mitochondrial junctions to influence whole-animal metabolic rate. Using transmission electron microscopy, we found that both three and six hours of UV-A/B irradiation (0.5 W/m2) increased the proportion of inter-mitochondrial junctions (with increasing mitochondrial aspect ratio) and the density of inner mitochondrial membrane in myocytes of Tigriopus californicus copepods. Mitochondrial density increased following both irradiation treatments, but mitochondrial size decreased under the six hour treatment. Metabolic rate was maintained under three hours of irradiation but decreased following six hours of exposure. These observations demonstrate that the density of inner mitochondrial membrane and proportion of inter-mitochondrial junctions can play formative roles in maintaining whole-animal metabolic rate, and ultimately organismal performance, under exposure to an oxidative stressor.


Copepoda/cytology , Mitochondria, Muscle/ultrastructure , Mitochondrial Membranes/ultrastructure , Ultraviolet Rays/adverse effects , Animals , Copepoda/radiation effects , Energy Metabolism/radiation effects , Female , Male , Microscopy, Electron, Transmission , Mitochondria, Muscle/radiation effects , Mitochondrial Membranes/radiation effects , Oxidative Phosphorylation , Oxidative Stress
18.
FEBS J ; 288(9): 3024-3033, 2021 05.
Article En | MEDLINE | ID: mdl-33202085

Uncoupling protein 1 (UCP1) is found in the inner mitochondrial membrane of brown adipocytes. In the presence of long-chain fatty acids (LCFAs), UCP1 increases the proton conductance, which, in turn, increases fatty acid oxidation and energy release as heat. Atomic models of UCP1 and UCP2 have been generated based on the NMR backbone structure of UCP2 in dodecylphosphocholine (DPC), a detergent known to inactivate UCP1. Based on NMR titration experiments on UCP1 with LCFA, it has been proposed that K56 and K269 are crucial for LCFA binding and UCP1 activation. Given the numerous controversies on the use of DPC for structure-function analyses of membrane proteins, we revisited those UCP1 mutants in a more physiological context by expressing them in the mitochondria of Saccharomyces cerevisiae. Mitochondrial respiration, assayed on permeabilized spheroplasts, enables the determination of UCP1 activation and inhibition. The K56S, K269S, and K56S/K269S mutants did not display any default in activation, which shows that the NMR titration experiments in DPC detergent are not relevant to UCP1 function.


Adipocytes, Brown/ultrastructure , Mitochondrial Uncoupling Proteins/ultrastructure , Protein Conformation , Uncoupling Protein 1/ultrastructure , Adipocytes, Brown/metabolism , Animals , Fatty Acids/genetics , Fatty Acids/metabolism , Humans , Ion Channels/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Mitochondrial Uncoupling Proteins/chemistry , Models, Structural , Oxygen Consumption/genetics , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Protons , Rats , Saccharomyces cerevisiae , Structure-Activity Relationship , Uncoupling Protein 1/chemistry , Uncoupling Protein 1/genetics
19.
Nat Commun ; 11(1): 5342, 2020 10 22.
Article En | MEDLINE | ID: mdl-33093501

Mitochondrial ATP synthases form functional homodimers to induce cristae curvature that is a universal property of mitochondria. To expand on the understanding of this fundamental phenomenon, we characterized the unique type III mitochondrial ATP synthase in its dimeric and tetrameric form. The cryo-EM structure of a ciliate ATP synthase dimer reveals an unusual U-shaped assembly of 81 proteins, including a substoichiometrically bound ATPTT2, 40 lipids, and co-factors NAD and CoQ. A single copy of subunit ATPTT2 functions as a membrane anchor for the dimeric inhibitor IF1. Type III specific linker proteins stably tie the ATP synthase monomers in parallel to each other. The intricate dimer architecture is scaffolded by an extended subunit-a that provides a template for both intra- and inter-dimer interactions. The latter results in the formation of tetramer assemblies, the membrane part of which we determined to 3.1 Å resolution. The structure of the type III ATP synthase tetramer and its associated lipids suggests that it is the intact unit propagating the membrane curvature.


Mitochondrial Proton-Translocating ATPases/chemistry , Cryoelectron Microscopy , Membrane Lipids/chemistry , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/ultrastructure , Mitochondrial Proton-Translocating ATPases/classification , Mitochondrial Proton-Translocating ATPases/ultrastructure , Models, Molecular , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Quaternary , Protein Subunits/chemistry , Proteins/chemistry , Proteins/ultrastructure , Protozoan Proteins/chemistry , Protozoan Proteins/ultrastructure , Tetrahymena thermophila/enzymology , Tetrahymena thermophila/ultrastructure , ATPase Inhibitory Protein
20.
Trends Cell Biol ; 30(12): 923-936, 2020 12.
Article En | MEDLINE | ID: mdl-32978040

Mitochondria are dynamic organelles that have essential metabolic and regulatory functions. Earlier studies using electron microscopy (EM) revealed an immense diversity in the architecture of cristae - infoldings of the mitochondrial inner membrane (IM) - in different cells, tissues, bioenergetic and metabolic conditions, and during apoptosis. However, cristae were considered to be largely static entities. Recently, advanced super-resolution techniques have revealed that cristae are independent bioenergetic units that are highly dynamic and remodel on a timescale of seconds. These advances, coupled with mechanistic and structural studies on key molecular players, such as the MICOS (mitochondrial contact site and cristae organizing system) complex and the dynamin-like GTPase OPA1, have changed our view on mitochondria in a fundamental way. We summarize these recent findings and discuss their functional implications.


Mitochondrial Membranes/metabolism , Cardiolipins/metabolism , Energy Metabolism , Humans , Mitochondrial Membranes/ultrastructure , Mitochondrial Proteins/metabolism , Models, Biological
...